Review & Complement Hung-yi Lee

Announcement

- 4/20 (下下週三) 期中考
 - 範圍: 到第四章 (有*章節不考)
- 下週三、週四複習
 - 把想問的問題、想講解的習題、想講解的章
 節在下週二午夜前讓老師知道
- 勾選習題
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses/LA _2016/Lecture/problem.pdf

More about Rank

Review: Rank A

Maximum number of Independent Columns

Number of Pivot Columns

Number of Non-zero rows

Number of Basic Variables

 $Dim (Col A) = Dim (Row A) = Dim (Col A^T)$

Dimension of the range of function A

• A is a m x n matrix.

$Rank A \leq min(m, n)$

- A is said to have **full rank** if Rank A = m or Rank A = n.
- A is said to be **rank deficient** if it does not have full rank.
- Rank $A = Rank A^T$

• If A is a m x n matrix, and B is a n x k matrix.

 $Rank(AB) \leq min(Rank(A), Rank(B))$

• If B is a matrix of rank n, then

Rank(AB) = Rank(A)

• If A is a matrix of rank n, then

Rank(AB) = Rank(B)

• If A is a m x n matrix, and B is a n x k matrix.

 $Rank(AB) \leq Rank(A)$

• If A is a m x n matrix, and Q is a m x m invertible matrix.

$$Rank(QA) = Rank(A)$$

Invertible matrix is a product of elementary matrices.

Elementary row operation will not change the row space

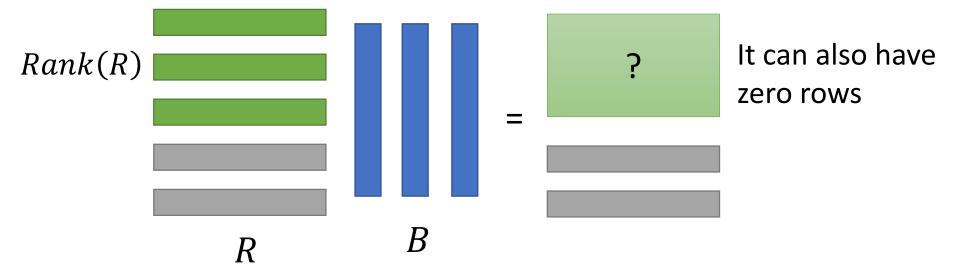
dim of row space

• If A is a m x n matrix, and B is a n x k matrix.

 $Rank(AB) \leq Rank(A)$

PA = R Rank(AB) = Rank(PAB) = Rank(RB)

P is an invertible matrix Rank(A) = Rank(PA) = Rank(R)



• If A is a m x n matrix, and B is a n x k matrix.

 $Rank(AB) \leq Rank(A) \square Rank(AB) \leq Rank(B)$

- If B is a matrix of rank n, then Rank(AB) = Rank(A)
- If A is a matrix of rank n, then Rank(AB) = Rank(B)

 $Rank(AB) = Rank(B^{T}A^{T}) \leq Rank(B^{T}) = Rank(B)$

$$\operatorname{Rank}(A^T) = n = \operatorname{Rank}(A)$$

Theorem 4.9 (P258)

- If V and W are subspaces of \mathbb{R}^n with V contained in W, then dim V \leq dim W
- If dim V = dim W, V=W
- Proof:

 $B_{\rm V}$ is a basis of V, V in W, $B_{\rm V}$ in W

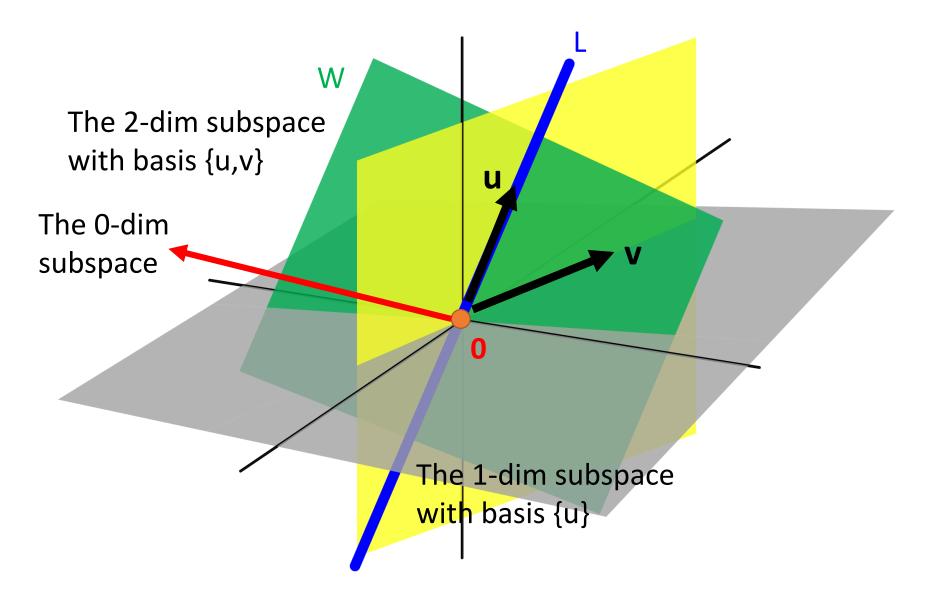
B_v is an independent set in W

By extension theorem, B_V is in the basis of W \implies dim V \leq dim W If dim V = dim W =k

 B_V is a linear independent set in W, with k elements

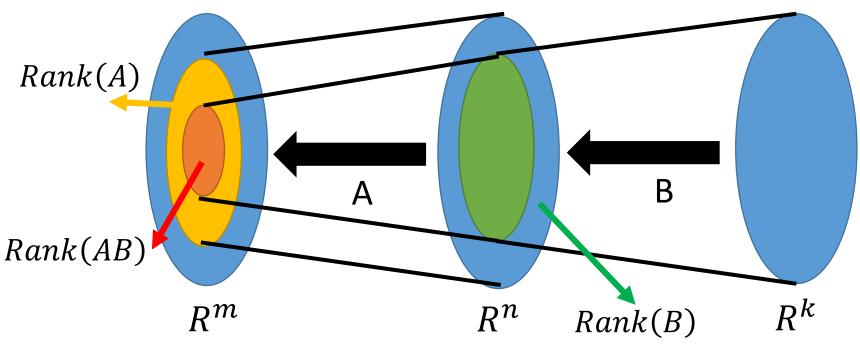
It is also the span of W

R³ is the only 3-dim subspace of itself



• If A is a m x n matrix, and B is a n x k matrix.

 $Rank(AB) \leq Rank(A)$



HW: Proof $Rank(A + B) \leq Rank(A) + Rank(B)$

$Rank(AB) \leq min(Rank(A), Rank(B))$

Dependent

Independent

More about Determinants

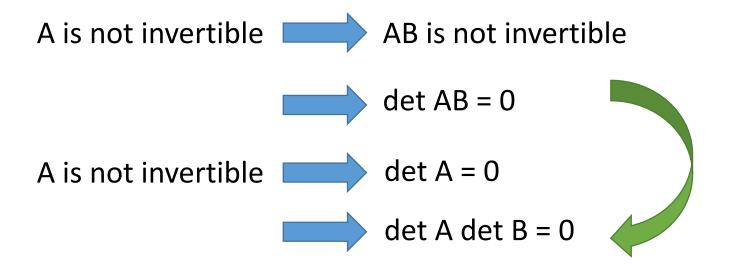
- Basic Property 1: det(I) = 1
- Basic Property 2: Exchange rows reverse the sign of det
 - If a matrix A has 2 equal rows, det A = 0
- Basic Property 3: Determinant is "linear" for each row
 - A row of zeros, det A = 0

A is invertible

$$det \left(\begin{bmatrix} ta & tb \\ c & d \end{bmatrix} \right) = tdet \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right)$$
$$det \left(\begin{bmatrix} a + a' & b + b' \\ c & d \end{bmatrix} \right) = det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) + det \left(\begin{bmatrix} a' & b' \\ c & d \end{bmatrix} \right)$$

 $det(A) \neq 0$

- det(AB) = det(A)det(B)
- Proof:
 - If A is not invertible:



- det(AB) = det(A)det(B)
- Proof:

If A is invertible:

 $A = E_k \cdots E_2 E_1$

You have to proof that det EA = det E det A

(E is elementary matrix)

 $det(A) = det(E_k) \cdots det(E_2)det(E_1)$ $det(A)det(B) = det(E_k) \cdots det(E_2)det(E_1)det(B)$ $= det(E_k) \cdots det(E_2)det(E_1B)$ $= det(E_k \cdots E_2E_1B) = det(AB)$

det $E = det E^T$ in the textbook

• det A = det A^T

• Proof:
$$detA = \sum \pm n! terms$$

Format of each term: $a_{1\alpha}a_{2\beta}a_{3\gamma}\cdots a_{n\omega}$

Sorted by column indices

Find an element in
each rowpermutation of
1,2, ..., n

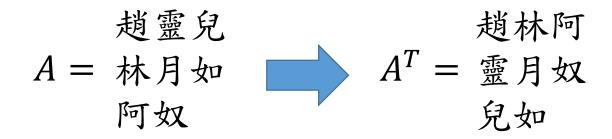
Format of each term: $a_{\underline{\alpha'}1}a_{\underline{\beta'}2}a_{\underline{\gamma'}3}\cdots a_{\underline{\omega'}n}$

Find an element in each column

permutation of 1,2, ..., n

A v.s. A^{T}

- Rank $A = Rank A^T$
- det A = det A^T



Name $A = Name A^T$

Dependent and Independent Set

Properties (P81)

• For vector sets with one vector {**u**}:

 $u \neq 0$ dependent u = 0 independent

• For vector sets with two vector $\{u_1, u_2\}$:

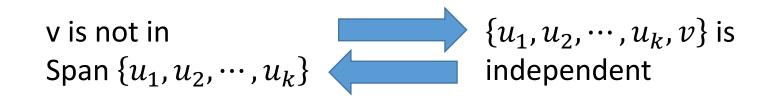
$$m{u_1} = m{0}$$
 or $m{u_2} = m{0}$ $m{u_2}$ is a multiple of $m{u_1}$ dependent dependent

• For a vector set with three vector $\{e_1, e_2, e_1 + e_2\}$

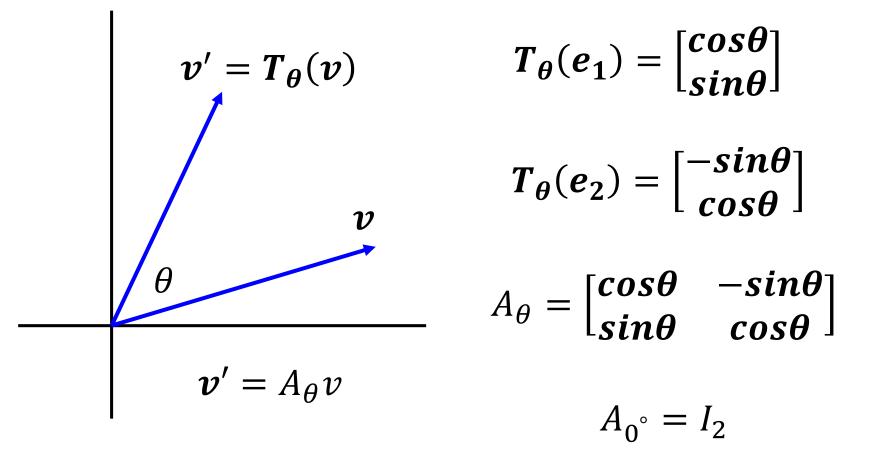
dependent

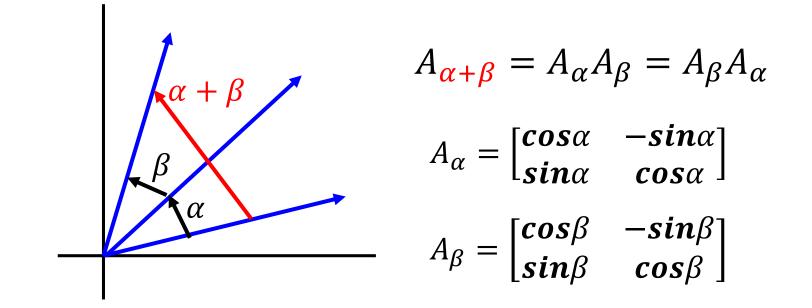
Properties (P81)

• Let $\{u_1, u_2, \cdots, u_k\}$ is independent



- Every vector set of Rⁿ containing more than n vectors must be dependent.
- If no vector can be removed from vector set S without changing its span, S is independent.
- Theorem 1.9 (yourself)





$$A_{\alpha}A_{\beta} = \begin{bmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & -\cos\alpha\sin\beta - \sin\alpha\cos\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & -\sin\alpha\sin\beta + \cos\alpha\cos\beta \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = A_{\alpha + \beta}$$

